skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Woesik, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Coral reefs are the world’s most diverse marine ecosystems that provide resources and services that benefit millions of people globally. Yet, coral reefs have recently experienced an increase in the frequency and intensity of thermal-stress events that are causing coral bleaching. Coral bleaching is a result of the breakdown of the symbiosis between corals and their symbiotic microalgae, causing the loss of pigments and symbionts, giving corals a pale, bleached appearance. Bleaching can be temporary or fatal for corals, depending on the species, the geographic location, historical conditions, and on local and regional influences. Indeed, marine heat waves are the greatest threat to corals worldwide. Here we compile a Global Coral-Bleaching Database (GCBD) that encompasses 34,846 coral bleaching records from 14,405 sites in 93 countries, from 1980–2020. The GCBD provides vital information on the presence or absence of coral bleaching along with site exposure, distance to land, mean turbidity, cyclone frequency, and a suite of sea-surface temperature metrics at the times of survey. 
    more » « less
  2. Guest, James R. (Ed.)
    Coral reefs protect islands, coastal areas, and their inhabitants from storm waves and provide essential goods and services to millions of people worldwide. Yet contemporary rates of ocean warming and local disturbances are jeopardizing the reef-building capacity of coral reefs to keep up with rapid rates of sea-level rise. This study compared the reef-building capacity of shallow-water habitats at 142 sites across a potential thermal-stress gradient in the tropical Pacific Ocean. We sought to determine the extent to which habitat differences and environmental variables potentially affect rates of net carbonate production. In general, outer-exposed reefs and lagoonal-patch reefs had higher rates of net carbonate production than nearshore reefs. The study found that thermal anomalies, particularly the intensity of thermal-stress events, play a significant role in reducing net carbonate production—evident as a diminishing trend of net carbonate production from the western to the central tropical Pacific Ocean. The results also showed a latent spatial effect along the same gradient, not explained by thermal stress, suggesting that reefs in the western tropical Pacific Ocean are potentially enhanced by the proximity of reefs in the Coral Triangle—an effect that diminishes with increasing distance and isolation. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Climate change threatens coral reefs by causing heat stress events that lead to widespread coral bleaching and mortality. Given the global nature of these mass coral mortality events, recent studies argue that mitigating climate change is the only path to conserve coral reefs. Using a global analysis of 223 sites, we show that local stressors act synergistically with climate change to kill corals. Local factors such as high abundance of macroalgae or urchins magnified coral loss in the year after bleaching. Notably, the combined effects of increasing heat stress and macroalgae intensified coral loss. Our results offer an optimistic premise that effective local management, alongside global efforts to mitigate climate change, can help coral reefs survive the Anthropocene. 
    more » « less